
LAMMPS for Dummies

G.A. Frank∗ and I. Sticco†

Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina.

(Dated: March 11, 2016)

This article is intended as a starting point in the art of simulation. We will try to make it easy...

PACS numbers: DuMMy, 1.2.me

I. INSTALLATION

We chose lammps as our main simulation tool. Why?
Because someone in our team liked it and he encouraged
us to use it. But for a dummy like me, the first mile-
stone was to install lammps into a Linux machine. My
advise: get a friendly Linux distribution like Ubuntu.
Furthermore, use the most widely spread distro that you
see in the desks around (in order to have someone to ask
in case you get into trouble).

Once you have a working machine running, download
the most recent stable version of LAMMP from

http://lammps.sandia.gov/download.html

You will get a “tarball”, that is, a file named something
like lammps-stable.tar.gz. You need to unpack the
tarball in two steps. The first step will unzip the exten-
sion .gz and the second one will uncompress all the files
into their corresponding directories and sub-directories.
How to do that? Easy, open a “terminal” (any icon
representing a computer screen with a “prompt” like
$_ or >_ or similar will open a terminal). Make sure
that lammps-stable.tar.gz is in the correct directory,
say, the directory intended for your own documents (i.e.
/home/you/Documents, where “you” is your username).
Then type,

cd /home/you/Documents
gunzip lammps-stable.tar.gz
tar xvf lammps-stable.tar

It’s OK if the terminal becomes verbose. It is showing
all the files that are been uncompressed. After it stops
printing messages you can type a dir command and you
will notice that a new directory has been created. It will
look something like lammps-10Aug15 or any other date.
All the source files are placed inside.

lammps needs the C language and the MPI protocol sup-
port in order to run. We need to check if both of them

∗ guillermo.frank@gmail.com; Also at Universidad Tecnológica Na-
cional, Facultad Regional Buenos Aires, Av. Medrano 951, 1179
Buenos Aires, Argentina.
† ignaciosticco@gmail.com

are already installed in our machine. You can type g++
for the first check and mpirun for the second one. g++
is the C compiler, while mpirun calls the MPI protocol.
If any of them are not installed, you will get the corre-
sponding error message. Please, read carefully the mes-
sage because other error messages are possible, such as
“no source file” or whatever. In case you need to install
them, type respectively

sudo apt-get install g++
sudo apt-get install openmpi-bin libopenmpi-dev

Remember that the sudo command gives you the
power to become a super-heroe inside Linux. You will
need to type your personal password to proceed. After
that, you are able to finish the lammps installation by
typing

cd /home/you/Documents/lammps-10Aug15/src
make mpi

The process will take some minutes... After that you
will notice that the executable file lmp_mpi has been
created. Do not care if some warnings appear during
the process, it happens. But do care for for any error
message. The most common messages correspond to
missing software in your computer. Read carefully
the messages any google how to install them in your
computer.

To know if lammps is working fine, just run an example.
Try this one

./lmp_mpi -i /home/you/Documents/
lammps-10Aug15/examples/melt/in.melt

(its only a one-line command; it appears as a broken line
for space reasons). The screen will show a small report
of somekind of simulation. If you reach this point, you
are done!

Be aware that the ./ means that Linux should look
for lmp_mpi at the current directory, otherwise a “file
not found message” will come up. To avoid moving to
this directory every time you log into the computer, you
need to include the current directory in the searching
path. Just type

export PATH="$PATH:/home/you/Documents/
lammps-10Aug15/src";
echo export PATH="$PATH:/home/you/Documents/
lammps-10Aug15/src" >> /home/you/.bashrc

2

and the same for the examples directory. These are one-
line commands (broken lines appear for space reasons).

export PATH="$PATH:/home/you/Documents/
lammps-10Aug15/examples";
echo export PATH="$PATH:/home/you/Documents/
lammps-10Aug15/examples" >> /home/you/.bashrc

II. MY FIRST EXAMPLE

We now encourage ourselves to simulate the movement
of molecules confined in a squared box. For simplicity,
the molecules will be able to move only in the x − y
plane (2D movement).

As a first step, we need to write some code for the
simulation. lammps has built-in functions for placing
molecules inside the box and moving them according to
Newton’s laws. Thus, our code only needs to call these
specific functions. The text file where we write down the
list of instructions (i.e. built-in functions) is a “script”
file. For some reasons (most probably, tradition) the
script file is named in.name (replace the word name for
whatever you like). I will call it in.myexample. There
are many text editors you can use for writting the script.
I will use gedit, but choose the one you like most. If the
text editor is not installed in your computer, type

sudo apt-get install gedit

(and your password immediately after that). I will start
my script file by entering gedit in.myexample. As a
first line in the script I will write what the instructions
do. It will look like this

Lennard-Jones molecules in a 2D box
This is my first example

Comments should always start with the # symbol. Any
text behind the # will treated as a comment. Notice that
it is not mandatory to include comments in your script
file, but it’s a good practice. The following sections will
explain the instruction list in order of appearance.

A. The inital conditions

We must specify the molecules initial position and ve-
locity. This is necesary since the movement equation
(Newton law)

m
dv

dt
=

N∑
i=1

fi (1)

is a second order differential equation. Thus, we must
provide x(0) and v(0) to get a unique trayectory for

each molecule.

Asume that we want to place 100 molecules in the
box. There should be enough room for placing the
molecules in such a way that each one does not “feel”
the presence of the others. This will ensure that no
potential energy is present at the begining of the
simulation (that is, only kinetic energy). For example,
if the molecules are Lennard-Jones particles, the typical
cut-off distance for the potential is rc = 2.5 (in reduced
units, called Lennard-Jones units). Consequently, we
will place the molecules at a separation distance of 3
(reduced) units. We will arrange them in a “square”
symmetric configuration. Actually, the arrangement is
not important, since the system will keep no memory of
the initial configuration after some time.

The box will be filled with 10 × 10 molecules
separated 3 units. The size of the box should be
1.5 + (10 − 1) × 3 + 1.5 = 30 for each dimension. The
additional 1.5 units at the beginnig and at the end of the
last expression corresponds to the separation distance
between de molecules and the walls.

The list of instructions for preparing the molecules for
the simulation is as follows

dimension 2
units lj
lattice sq 0.1111 origin 0.5 0.5 0.0
region box block 0 30 0 30 -3 3 units box
create_box 1 box
create_atoms 1 box
mass 1 1.0
velocity all create 2 87287 dist gaussian

The list is almost self-explanatory. dimension and
units are obvious instructions.

The lattice instruction makes the arrangement of the
molecules in a sq (square) configuration. The number at
the right of the sq indication is the (reduced) density ρ∗

of molecules. Remember that

ρ∗ =
N

V ∗
=

N

(r∗)d
(2)

where N is the number of “basis” molecules of the
square configuration and V ∗ is the (reduced) volume
of the square configuration. d is the dimension of the
configuration (in this case, d = 2).

There is only 1 “basis” molecule at the corner of the
square. We do not take into account the rest of the
molecules because they belong to the neighbour squares.
Or alternatively, we can think that each corner is shared
by 4 squares, and thus, only 1/4 of the molecule belongs
to each square. Consequently, 4× 1/4 = 1 is the number
of molecules per square. The reduced density is

3

ρ∗ =
1

32
= 0.1111 (3)

(caution! this is only valid for lj units).

The origin option specifies the shift of the square con-
figuration from de origin. Thus, origin 0.5 0.5 0.0
means that the square will be shifted half of its length
(i.e. half of 3 reduced units) in the x-axis and the y-axis,
but no shift at all will be added to the z-axis.

The next instruction is region. We label it as box but
any other name is possible. The block option means
it will be a squared geometrical space. The block is
limited by xmin xmax ymin ymax zmin zmax, in that
order of appearance. The option units box means that
the limiting distances are expressed in lj units (that
is, in reduces units). Notice that block is a 3D shaped
region, so the z-axis limits must be included. However,
the z-axis will play no role.

The instruction region defines a space region, but
it does not create it. Consequently, two additional
instruction are needed: create_box and create_atoms.
Both instructions need an “identification number” (in
this case 1). The identification is necessary because
multiple regions or molecule types are possible. We link
the identificacion number to the box region.

Right after we create the molecules, we realize that
their mass property has not been specified. If we do
not care about this, LAMMPS will complain when
executing the velocity instruction, as described bellow.
So, we set the mass value for the type 1 molecules as 1.0.

The last instruction specifies the molecules temper-
ature. This temperature is associated to the kinetic
energy (remember that no potential energy is present
at the beginning because of the cut-off distance) and
therefore, it depends only on the velocity. Thus, the
initial velocities should resemble the temperature of the
hole configuration.

The velocities can be asumed to be normally dis-
tributed. This corresponds to the ideal gas distribu-
tion. The (reduced) temperature of our Lennard-Jones
molecules should be high enough to ensure that no
droplets can exist, and therefore, behave as an ideal
gas. For not very compact configurations, this can be
achieved by setting the (reduced) temperature to T ∗ = 2
(for ρ∗ = 0.11). The velocity distribution (2D movement
only) will look like

f(vx, vy) =
1

2π(T ∗/m∗)
e−(v

2
x+v

2
y)/(2T

∗/m∗) (4)

where T ∗ = kBT/ε is the reduced temperature and m∗

is the reduced mass. Remember that we have already

set the mass value to one (in lj Lennard-Jones units).

When telling lammps to create a dist gaussian,
we obtain the (vx, vy) pairs distributed as in (4),
but for the preset temperature T ∗ = 1 (that is,
T ∗/m∗ = 1 by default). The number 87287 appearing
on the left of the dist gaussian instruction is the
initial seed for the random numbers generator. It can
be any other number if you like (your birthday may be?).

We need to change the initial (reduced) temperature
to T ∗ = 2. The velocity instruction does this by
specifying create 2, as written above. Thus, the whole
instruction line reads something like this: create an
initial velocity set for all the molecules with (reduced)
temperature value 2.

The procedure followed by lammps to set the (reduced)
temperature to an arbitrary value is the velocity re-
scaling. That is, if the molecules are at a current (re-
duced) temperature T ∗, and we want them to be at a
desired (reduced) temperature T ∗desired, then the veloci-
ties should be re-scaled to

vnewx =

√
T ∗desired
T ∗

vx , vnewy =

√
T ∗desired
T ∗

vy, (5)

Notice that we only need to tell lammps the desired
temperature, while the re-scaling is done in the back-
ground.

B. The boundary conditions

The molecules are confined to the box, that is, they are
not able to escape from the 30×30×1 space (in lj units).
However, we did not give further details on how should
the molecules interact with the walls. For example, the
box can have “hard” walls or “soft” ones. The former
are walls with a very sharp potencial energy profile. For
simplicity, we will assume that the walls have a Lennard-
Jones profile. The boundary conditions for this kind of
walls can be written as follows

fix mywalls all wall/region box
lj126 0.1 0.1 2.5

(warning: this is a one-line instruction. The line has
been broken for space reasons)

The fix command does not look very easy to under-
stand at first. But, if we break into parts, it will become
more obvious. The fix by itself means something like
“perform the following from now on, until we explicitly
change it”. This particular fix is labelled as mywalls
and it applies to all the molecules (inside the box). The
specific action to be performed is related to the surface

4

of the box, that is, to the wall/region option. The
only region that we have already defined is box, and we
specify it immediately after wall/region.

Once we told lammps that we want to perform some
action between the molecules and the walls (remem-
ber, fix mywalls all wall/region box) we now de-
tail the kind of action. It corresponds to a specific in-
teraction profile. For simplicity, we consider a “hard”
Lennard-Jones(12,6) wall-molecule profile. This is passed
to lammps by writting lj126 (see the fix intruction
above). The three numbers after lj126 correspond to ε,
σ and the cut-off distance rc of the Lennard-Jones(12,6),
respectively. If you do not remember the expression of
the LJ(12,6), here it is

V (r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, r < rc (6)

The ε parameter corresponds to the minimum value
in the profile. We will set it to 0.1. σ represents
the zero crossing distance. We will also set it to
0.1 because we expect very short range interactions
between the molecules and the walls. Notice that
although we still keep rc = 2.5, we actually narrowed
the cut-off distance since we have changed the value of σ.

III. UNDERSTANDING LAMMPS REPORT

Leave our anxiety aside for a while, and check out if
your instruction set is working fine. Drop in.myexample
into the /src subdirectory and type in the following
command-line (remember to move to that subdirectory)

./lmp_mpi -i in.myexample

and you will recieve the following report

LAMMPS (10 Aug 2015)

Lattice spacing in x,y,z = 3.00015 3.00015 3.00015

Created orthogonal box = (0 0 -3) to (30 30 3)

1 by 1 by 1 MPI processor grid

Created 100 atoms

Great! No ERROR messages, so it seems that the config-
uration has been created successfully. lammps presents
itself in the first line and tells the date of the current
version. In the second line we can find the lattice edges
in reduced units. Although we set the length to 3, there
is a small round-off error, moving the length to 3.00015.
If this bothers you, enhance the precision of the density
to 0.111111 (included in the lattice instruction above).

Notice that the lattice spacing in the z-axis has length
3. This means that the box where the molecules are

placed should be high enough to include the whole
lattice. Thus, make sure to build the box with enough
space to completely include at least one lattice cell.

The fourth line informs us that a 1 by 1 by 1
MPI processor grid has been assigned. It looks
somehow like a mysterious message. What is a 1× 1× 1
processor grid? Is this good or bad?

lammps is able to run the simulation on many
processors to improve the overall time performance.
Actually, lammps splits (if possible) each dimension into
separate processes. Thats why it reports the number of
processors assigned to the x, y and z dimensions. In this
example, 1 by 1 by 1 means that only 1 processor has
been assigned to the simulation. To increase the number
of assigned processors we should use the processors
instruction. But do not worry for now. We will make
the improvements later.

The last line in the report is self-explanatory.

IV. VISUALIZING THE CONFIGURATION

Be patient for a short while! Before we run the
simulation, we want to make sure that the molecules are
in the right places. lammps has a tool for that, and it
is called dump image. However this instruction uses the
libjpeg and the libpng libraries to build the .jpg or
the .png file.

First, we will install the necessary libraries (through
the “terminal”) as follows

sudo apt-get install libjpeg-dev
sudo apt-get install libpng-dev

Second, we will tell lammps that these libraries are now
available in the system. This can be done by making a
few changes in the Makefile.mpi file. You can find it in

/home/you/Documents/lammps-10Aug15
/src/MAKE/Makefile.mpi

After you open the file (use, for example, gedit
Makefile.mpi), find the line LMP_INC = -DLAMMPS_GZIP

and replace it with

LMP_INC = -DLAMMPS_GZIP -DLAMMPS_JPEG -DLAMMPS_PNG

Do the same with the line starting with JPG_LIB by
writing

JPG_LIB = -ljpeg -lpng

You are almost done! lammps needs to be re-compiled
to handle this new capability. Go back to /src (inside
the lammps directory) and write

5

make clean-all
make mpi

(caution! make clean-all will reset all)

If no E: (error) messages appear during the compila-
tion process, you are now able to print an image of the
molecules configuration. Add the following instructions
into our in.myexample file

dump myexample all image 1 myexample*.jpg type type

atom_modify sort 0 0.0

run 0

The first line means “make a dump process, named
myexample, to image all the molecules. The images
should be saved into files named myexample*.jpg,
where the asterisk means a sequence of numbers.” The
two type words means that lammps should use the
default color and diameter for imaging the molecules,
respectively.

At this stage, the atom_modify and run instructions
are not essential. However, both will be needed for
running the simulation. The only reason for including
these instructions right now is to avoid error messages.

The atom_modify sort instruction handles the way
the molecules are sorted during the simulation process.
lammps makes a spatial ordering of molecules period-
ically to speed-up the simulation time. The syntax
atom_modify sort 0 0.0 means that we do not want
the spatial ordering to happen at all. Thus, we have
disabled the spatial ordering because we want to keep
the process as simple as possible (remember that this is
our very first example!).

The instruction run shoots the process. However,
run 0 does nothing at all since we are telling lammps to
run “zero time steps of the process” (say, do not run it
at all).

V. ANOTHER LAMMPS REPORT

What will happen if we make a new try by typing again
./lmp_mpi -i in.myexample ? We will get the same re-
port as in the first try, but now the following information
will appear on screen

Setting up Verlet run ...
Unit style : lj
Current step: 0
Time step : 0.005

Memory usage per processor = 2.60227 Mbytes
Step Temp E_pair E_mol TotEng Press
0 2 0 0 1.98 0.22
Loop time of 9.53674e-07 on 1 procs

for 0 steps with 100 atoms

Pair time (%) = 0 (0)
Neigh time (%) = 0 (0)
Comm time (%) = 0 (0)
Outpt time (%) = 0 (0)
Other time (%) = 9.53674e-07 (100)

Nlocal: 100 ave 100 max 100 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 0
Ave neighs/atom = 0
Neighbor list builds = 0
Dangerous builds = 0

The first four lines tell us that lammps defaults to
a standard velocity-Verlet integrator. That is, the
Newton eq. (1) is solved numerically by means of the
velocity-Verlet scheme. The (reduced) time-step is
0.005 by default.

The memory usage and the required loop time
information are shown in the fifth and eighth line,
respectively. Our small simulation needs 2.6 Mbytes of
memory for running the process, while it took 9.5e-07
seconds to do nothing (¿?). This is fine because lammps

people estimate a time consumption of 7.02e-7 seconds
per molecule (through a single time step) for a standard
Lennard-Jones simulation (on a single processor). Our
process consumed only 9.5e-9 seconds (per molecule)
but it did nothing at all. This can be checked by
watching the percentages needed for each specific job.
See that only the Other time (%) line exhibits a time
consumption.

We are not going to analyze in detail the rest
of the report because it will be very boring at this
stage. However, it is important to keep track of the
Nlocal line. Lost molecules may change this number,
and sometimes, it can indicate that the simulation failed.

Another important line in the report is the following

Step Temp E_pair E_mol TotEng Press
0 2 0 0 1.98 0.22

We can find relevant information on the state of the
system here. It says that at the Step=0 the system
temperature is Temp=2, but neither the pairwise energy
(E_pair=0) nor the molecular energy (E_mol=0) are
present (all magnitudes are expressed in the correspond-
ing reduced units). This is right since the molecules
separation distance was set to 3, while the cut-off
distance was set to 2.5. That is, each pair is beyond the

6

interacting distance at the beginning of the process (see
Section II A). E_mol and E_pair are similar magnitudes
in this case because no other kind of interaction has
been included in the model (bonds, etc.).

According to eq. (4) the initial velocity distribution at
Temp=2 is

f(vx, vy) =
1

4π
e−(v

2
x+v

2
y)/4 (7)

We are only interested in the modulus v = (v2x+v2y)1/2.
Thus, it is better to sum all the contributions (vx, vy)
having the same modulus v. The resulting modulus dis-
tribution is

f(v) =

∫ 2π

0

1

4π
e−v

2/4 v dϕ =
v

2
e−v

2/4 (8)

while the elemental area transforms as dvx dvy = v dv dϕ.
Notice that the energy distribution can be obtained
straight foward from the modulus distribution. The ki-
netic energy is defined as ek = v2/2 (assuming that the
reduced mass m∗ equals unity). Thus, the probability of
having kinetic energy distributed according to any func-
tion g(ek) should equal the probability of having a veloc-
ity modulus distributed es f(v). This means that

g(ek) dek = f(v) dv ⇒ g(ek) = f(v)/v|v=√2ek
(9)

The kinetic energy then distribution reads

g(ek) =
1

2
e−ek/2 (10)

It is easy to verify that summing (integrating) g(ek)
between 0 ≤ ek < ∞, gives unity as it should. The
kinetic mean energy is 〈ek〉 = 2. Notice that this is close
to the sampled value TotEng=1.98. Furthermore, the
standrad deviation computed from eq. (10) gives σ = 4,
and therefore, the standard deviation of the sampled
mean is σ/n = 4/100 = 0.04. The error is within the
standard deviation as expected!

The report also computes the pressure. We read
Press=0.22. This must be the same as the pressure for
an ideal gas because no interacting forces are present at
the beginning. In other words, in the well-known formula

P =
NkBT

V
+

1

d V

N∑
i=1

ri · fi (11)

the second term on the right vanishes. d is actually
the dimensionality of the system and equals 2 in our

example. The other magnitudes are obvious.

Realize that eq. (11) is not expressed in reduced units.
Remember that T ∗ = kBT/ε and that ρ = N/V (equiv-
alently, ρ∗ = N/V ∗). Thus, the reduced pressure should
be P ∗ = ρ∗T ∗. In our example, it gives P ∗ = 0.2222, the
same as the reported value. ¡Everything looks correct!

VI. RUNNING THE SIMULATION

Now we are able to make a “real” simulation. Just
replace the run 0 instructionwith the following

timestep 0.005
fix 1 all nve
thermo 100
run 5000

The first instruction tells lammps that time should
be increased by steps of 0.005 (reduced) time units.
This is, actually, the time step used for solving eq. (1)
numerically. The accuracy of the solution will depend
on the chosen time step. Smaller time steps will produce
more accurate trayectories for each molecule, at the
expense of a greater computational effort. Thus, ¡use
time steps that meet your needs, no more no less!.

Since our molecules are Lennard-Jones like particles,
energy is expected to remain constant along the sim-
ulation. That is, the simultation should resemble an
NV E system (remember NV E= unchanged number of
particles, unchanged volume and unchanged energy).
The second instruction above reads “perform an NV E
simulation for al the molecules”. The number 1 after the
fix means that this instruction will be labelled under
this number.

The fix nve implements a velocity-Verlet algorithm
by default. This is actually a standard implementation.
The velocity-Verlet algorithm is explained elsewhere.

The thermo 100 instruction calls for a report every
100 steps (see bellow). The run 5000 is self-explanatory.
After typing again ./lmp_mpi -i in.myexample we will
get the following

LAMMPS (10 Aug 2015)
Lattice spacing in x,y,z = 3.00015 3.00015 3.00015
Created orthogonal box = (0 0 -3) to (30 30 3)
1 by 1 by 1 MPI processor grid

Created 100 atoms
Setting up Verlet run ...
Unit style : lj
Current step: 0
Time step : 0.005

Memory usage per processor = 2.60227 Mbytes

7

Step Temp E_pair E_mol TotEng Press
0 2 0 0 1.98 0.22

100 2.0005342 0 0 1.9805289 0.22005876
200 2.0066896 0 0 1.9866227 0.22073586
300 2.4082693 0 0 2.3841866 0.26490963
400 2.4131575 0 0 2.3890259 0.26544733
500 2.4010132 0 0 2.3770031 0.26411146
600 2.4068912 0 0 2.3828223 0.26475804
700 2.4023948 0 0 2.3783708 0.26426342
800 2.4027414 0 0 2.3787139 0.26430155
900 2.4058498 0 0 2.3817913 0.26464347
1000 69.055823 0 0 68.365265 7.5961406
ERROR: Lost atoms: original 100 current 99
(../thermo.cpp:395)

The simulation crashed after the step 1000 (that is, 5
(reduced) time units). Notice that before the crash, at
exactly the step 1000, the total energy jumps from 2.38
to 68.36, while the pressure shoots to 7.59. There is no
“physical” reason for this, but a computational reason.

The ERROR message tells that a molecule has been
“lost”, that is, has left the box. This can only be possible
if the leaving molecule has enough energy to surpass
the potential barrier at the walls. Indeed, this is what
happened since the system energy blew out at step 1000.
The leaving molecule trayectory becomes meaningless at
this point. The velocity-Verlet algorithm has failed in
resembling the “true” (i.e. physical) trayectory.

The simulation claims for some kind of adjustment.
We will try to reduce the time step to 0.001 and see
what happens. We now get

Step Temp E_pair E_mol TotEng Press
0 2 0 0 1.98 0.22

500 2.0005250 0 0 1.9805197 0.22005775
1000 2.0004502 0 0 1.9804457 0.22004953
1500 2.0010575 0 0 1.9810469 0.22011632
2000 2.0004209 0 0 1.9804167 0.2200463
2500 2.0011037 0 0 1.9810927 0.22012141
3000 2.0015309 0 0 1.9815156 0.22016839
3500 2.0002086 0 0 1.9802065 0.22002295
4000 2.0002881 0 0 1.9802852 0.22003169
4500 2.000643 0 0 1.9806366 0.22007074
5000 2.0000054 0 0 1.9800054 0.2200006

The energy keeps almost constant now. Notice that
5000 steps now correspond to 5 (reduced) time units,
the same as before since 1000×0.005 = 5 (reduced) units.

This first experience shows how should we proceed if
things go wrong. The following are some pills of advice

• Follow the reports. Try making some adjustments
to the parameters.

• Read the lammps on-line help if you are not sure
on what a specific instruction is doing.
• If necessary open the source files where the ERROR

is supposed to have occured. Look deep inside the
code until it becomes clear.

• Ask a friend.... but do not bother Axel or Steve for
a small deal. Its dangerous to make Axel get angry.

