
LAMMPS for Dummies - (how-to’s)

F. Cornes∗

Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina.

G.A. Frank†

Universidad Tecnológica Nacional, Facultad Regional Buenos Aires,
Av. Medrano 951, 1179 Buenos Aires, Argentina.

(Dated: March 11, 2016)

This article is intended as a starting point in the art of simulation. We will try to make it easy...

PACS numbers: DuMMy, 1.2.me

I. HOW TO CREATE A COMPLEX REGION

Up to now we simulated particles inside in a square
region. Let’s see how we can make a region with an
aperture, like a door. In lammps the apertures are made
superposing regions. What? (you probably says) Let’s
take a look to the following instructions:

region zone1 block 0 30 0 30 -1 1 units box

region zone2 block 30.12 60 0 30 -1 1 units box

region zone3 block 29 31 14.4 15.6 -1 1 units box

region zone4 union 3 zone1 zone2 zone3

The first three are regions with different sizes that
overlap each other (this is important). The command
region has the option (union) that joins regions. If you
use this option you have to tell the amount of regions to
be joined (3 in this case) and then enumerate each one
by its name (label). In this case, the regions are zone1,
zone2 and zone3. That is all! A door is simply a narrow
region (zone3) that overlaps with the other teo (zone1
and zone2).

Now, we have to tell lammps where the simulation will
take place. Notice that this step is necesary since the
above definitions do not mention the role that the regions
will play during the process. Furthermore, we did not
specify (untill now) where the atoms (or molecules or
particles) will be placed. The following instructions do
these jobs

create_box 1 zone4
create_atoms 1 region zone1

With the create_box instruction we are telling
lammps the region where we want to run the simulation
(that is, inside zone4). With create_atoms we say
where the atoms will be placed. The number 1 in both
instructions correspond to the label of the box and the
label of the atoms. The box and the atoms do not need

∗ fercornes@gmail.com
† guillermo.frank@gmail.com

to have the same label. You can even label them with
more explicit names like mybox or myatoms, or whatever.
Future references will use these labels.

II. HOW TO MAKE A MOVIE

What is a simulation without a video? ...nothing. To
make a movie we have to install the package ffmpeg. It
can be download by writting in the “terminal” (Ubuntu
is quite simply)

sudo apt-get install ffmpeg

After that you need to make some aditional changes
to lammps in order to tell it that ffmpeg is available
in the system. The changes should be done to the file
Makefile.mpi located in the following directory

/home/you/Documents/lammps-10Aug15/src/MAKE

where you should be replaced with your user name in
the system. lammps-10Aug15 is the current version of
lammps, but you may have an other one. Please check
that!

Open the file Makefile.mpi with your prefered text
editor (typically gedit) and look for the line

LMP_INC = -DLAMMPS_GZIP -DLAMMPS_JPEG -DLAMMPS_PNG

Add -DLAMMPS_FFMPEG at the end of the lines (leave space
between PNG and -DLAMMPS...).

Perhaps you are a cautious person and you want to keep
things well done for the future (...just in case...). So, you can
apply the same changes to the file Makefile.serial. This is
not necesary, but you can leave it done for the future.

Finally, go back to the src directory and re-build lammps.
Type the following in the command-line

cd ..

make clean-all

make mpi

2

(this will take a few minutes). Notice that the instruction
make clean-all deletes any previous configuration, includ-
ing the additional lammps packages. Thus, you will need
to install them again. For example, if you installed the
granular package in the past, now you will need to type
make yes-granular.

Let’s return to the script. Making a movie is very similar
to making an image. This will be done by writting the
following instruction (in a single line)

dump myfirstmovie all movie 100 myfirstmovie.mp4

type type

This dump has the label myfirstmovie. The all op-
tion means that we want all the atoms (or molecules or
particles) to be displayed. The image sequences will be
updated every 100 timesteps and the movie will be saved as
myfirstmovie.mp4. It is not necesary for the filename to be
the same as the label.

Other available formats are .avi, .mpg, .m4v, .mp4, .mkv,
.flv, .mov, .gif. Now is time to enjoy the movie!

III. HOW TO PRINT OUT THE ATOMS
POSITIONS AND FORCES

lammps has an option that allows us to know several prop-
erties of the molecules at each timestep. For example, you
can try the following

dump myreport all custom 100 in.myreport id x y fx fy

This instruction makes a report of the x and y positions
(for all the molecules), and the corresponding forces fx

and fy. This dump is labelled as myreport and reports the
requested magnitudes every 100 timesteps. We had to tell
lammps that the wanted magnitudes are those written at
the end of the instruction, and that we also wanted them in
that order. This was done by means of the custom option.

Let’s take a look of the report file in.myreport at the zero
timestep.

ITEM: ATOMS id x y fx fy

1 1.50008 1.50008 -1.40417e-07 -1.40417e-07

2 4.50023 1.50008 0 -1.40417e-07

12 4.50023 4.50023 0 0

The first displayed magnitude is the atom id, that is,
the label of each atom. lammps usually prints the id’s in
consecutive order. However, you can change that by as-
signing different id’s to the molecules throughout the process.

Notice that the first molecule received a force
fx=-1.40417e-07 in the x-direction and fy-1.40417e-07 in
the y-direction. The second molecule only received a force in
the y-direction. The 12 molecule did not interact at all.

The complete report prints the positions and forces at each
timestep. This is what we call the configuration information.
Although this king of reports eats the disk space, it is

necesary for making movies with other programs such as VMD.

Some of the possible magnitudes that can be reported are
x y z (positions), vx vy vz (velocities), fx fy fz (forces)
and px py pz (pressures). As mentioned above, the id’s can
be changed by computing other ones such as the cluster id,
or user defined id’s.

IV. HOW TO MAKE ARITHMETIC
OPERATIONS

lammps is straight foward for running a bare simulation.
You only need a small script! But sometimes you will like
to make some kind of arithmetic operations during the
simulation process. There are two main reasons for this: you
might not want to write a program from scratch to get an
indirect magnitude, or, you can not afford storing big data in
your hard disk. If you feel that you fit into these categories,
continue reading.

We are going to explain to how obtain arithmetic results
from a simulation done with lammps. You first need
to differentiate between a variable and a compute. For
example, during the simulation process lammps computes
positions, velocities, etc. for each atom. These are atom
properties since each atom has its own value for the position,
velocity, etc. On the contrary, a variable stores values
(scalar or vector) and are not necesary related (univocally)
to atom values.

The starting point for retrieving data is telling lammps
which magnitudes are you interested in. For example, the
following instruction tells lammps that we are interested in
the x position for each atom

compute 1 all property/atom x

We have asked lammps to compute the x-position property

for all the atoms. We tagged these computation with the
number 1. From now on the computation of the x-positions
will be mentioned for short as c_1.

Suppose, for example, that we want to know how many
atoms are located at positions x > 10. Then, we should ask
whether c_1>10.0. If this is true the answer will be 1, while if
not the answer will be 0. We want to keep this answers, and
thus, we need to define a variable for storing this information.
We can do this as follows

variable b atom c_1>10.0

The above instruction creates the variable named b to
store the “per atom” results for the comparison c_1>10.0.
b can be visualized as the vector having 1 or 0 whether x > 10.

If we sum up all the 1’s in b we will know how many atoms
belong to the region x > 10. The summation corresponds to
a compute operation as follows

compute mycompute all reduce sum v_b

3

Once again, the computation labeled mycompute sums the
values in b. Notice that we have written v_b instead of b.
This is necesary to inform lammps that the values are stored
in a previously defined variable.

It looks strange that we summation is invoked es
reduce sum. We can explain that by saying that the
summation “reduces” many values to a single one. However,
this explanation is not satisfactory because it is ambiguous
and obscure. The “true” reasons for writing reduce sum are
programing reasons (out of the scope of this text).

Finally, we can store the computation mycompute (now
c_mycompute) in the variable s. Thus, the hole sequence of
instructions is

compute 1 all property/atom x

variable b atom c_1>10.0

compute mycompute all reduce sum v_b

variable s equal c_mycompute

V. HOW TO MAKE LOOPS

A loop is no more than a comparison and a jump. That
is, the comparison checks for the condition to be true. If this
happens, the consequently action is a jump to a specific line
in the lammps script.

To achieve a jump we need to tag the place where we want
to jump. For example, suppose that the following instructions
appear at some place in the script

label myfirstloop

...

...

jump SELF myfirstloop

(the ... lines indicate any instruction)

The label instruction indicates a specific place in the
script. The jump SELF is the way we say “at this point
make a jump back to the place where myfirstloop appears”.
This is an unconditional jump since no condition is required
for the jump. This kind of loops are never ending loops,
and thus, not practical. But its a good example to begin with.

Suppose we want to introduce a counter inside the loop.
That is, we would like to count how many jumps back we
have done. In order to achieve this, we first need to define a
new variable, say i and increase its value each time we jump
back. The following code illustrates how can this be done

variable i loop 100

label myfirstloop

...

...

next i

jump SELF myfirstloop

The first line defines the variable i, but IT DOES NOT
make i equal 100. Instead, it says i loop 100, meaning
that i will store the set 1, 2,..., 100. At first i is set to 1.

The loop starts at the second line and it ends with the
jump instruction. Immediately before the jump instruction we
included the instruction next i. This instruction increases
the i variable by one unit, and this operation is always
done before jumping back to the label line. However, if i

is increased to the “out of range” value 101, a break in the
loop occurs. The jump instruction is omitted, and the script
continues executing the instruction out of the loop. Notice
that the variable is able to take the values 1...100, so the
instructions inside the loop are swept a hundred times.

It is a good programing practice to delete used variables,
although this is not mandatory. The loop variable i can be
deleted after the loop. The way to do that is simply typing

variable i delete

Loops can be terminated under special circumstances. Sup-
pose, for example, that there is a variable tagged j inside the
loop, and something is going wrong if j exceeds 0.5. We
would like to finish the job if j > 0.5. Thus, we need to com-
pare the value stored in j at each loop cycle, and break the
loop if 0.5 is exceeded. We can do this as follows

variable i loop 100

label myfirstloop

...

...

if "$j > 0.5" then "jump SELF myescape"

...

...

next i

jump SELF myfirstloop

label myescape

The comparison between the value stored in j and 0.5

is done by the expression "$j > 0.5". The $j means “the
value stored in j”, not just the “tag j”. The if instrucction
evaluated the expression and executes a jump if the expression
becomes true. Otherwise, the jump SELF myescape will not
be used. In this case, we have done a jump forward to the
label myescape.

Be careful on the way you indicate a variable! We
mentioned above that j is the name of the variable, but $j

means the value stored in the variable. Also, be aware that
the names that include more than one character need to be
enclosed between braces. For example, the variable value
stored in myvar should be invoked as ${myvar}. You can also
invoke ${j} if you like.

